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ABSTRACT

The Fibonacci sequence is famous for possessing wohderfuamazing properties. In this paper, we present
generalized identities involving common factors dfikenacci-Like, k- Fibonacci and k-Lucas numbers afated identities.

Binet's formula will employ to obtain the identities
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INTRODUCTION

It is well-known that the Fibonacci sequence is most preni examples of recursive sequence. The Fibonacci
sequence is famous for possessing wonderful and amazing pespdfibonacci numbers are a popular topic for
mathematical enrichment and popularization. The Fibonaggea in numerous mathematical problems. Fibonacci
composed a number text in which he did important work inbmimtheory and the solution of algebraic equations. The
book for which he is most famous in the “Liber abaci” publisted202. In the third section of the book, he posed the
equation of rabbit problem which is known as the first nrattecal model for population growth. From the statement of

rabbit problem, the famous Fibonacci numbers can be derived,
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Figure 1

This sequence in which each number is the sum of the twedinecnumbers has proved extremely fruitful and

appears in different areas in Mathematics and Science.

The Fibonacci sequence, Lucas sequence, Pell sequencd,udzall sequence, Jacobsthal sequence and

Jacobsthal-Lucas sequence are most prominent examples sivecaguences.

The Fibonacci sequence [8] is defined by the recurreziaéon
F=FR,*+F_, k=22 withF,=0,F=1 (1.2)

The Lucas sequence [8] is defined by the recurrence relation
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L=L,+L_,, k22 with,=2,1,=1 (1.2)
The second order recurrence sequence has been geneiraltnedways mainly, first by preserving the initial
conditions and second by preserving the recurrence relation.

Kalman and Mena [5] generalize the Fibonacci sequence by

F,=aF,_, +bF,

n-21

n=2 with =0, F=1 (1.3)
Horadam [1] defined generalized Fibonacci sequence by

H,=H_,+H_,, n=23with H = p, H,= p+ g (1.4)

-2
where p and g are arbitrary integers.

Panwar, Rathore and Chawla [18] introduced the k-Fiborlakeisequence and proved some related identities.

For any positive real number k, the k-Fibonacci-Like sequé@g} is defined by the recurrence relation

S<,n+2= k%,ml-'- $,n7 20 with §)= 2, 1§= 2 (1.5)

This sequence contains features both of the k-Fibonaccirsegjaed the Fibonacci-Like sequence.

PRELIMINARIES

The k-Fibonacci numbers which are of recent origin wertsmdoby studying the recursive application of two
geometrical transformations used in the well-known four tteangngest-edge partition [10], serving as an example
between geometry and numbers. Also in [18], authors estalllisome new properties of k-Fibonacci numbers and k-
Lucas numbers in terms of binomial sums. Falcon and BRRzstudied 3-dimensional k-Fibonacci spirals considering
geometric point of view. Some identities for k-Lucas nuralmeay be found in [2]. In [4] many properties of k-Fibonacc

numbers are obtained by easy arguments and related witllebfascal triangle.

In this section, we Review Basic Definitions and Introdue Relevant Facts

Definition (k-Fibonacci sequence [4]).: For any positive real number k, the k-Fibonacci sem{rﬁ;’n} is

defined by the recurrence relation
Foni=KR +F .., n21 with F =0, F =1 (2.0)

A few k-Fibonacci numbers are

F.=kK
Fos=k*+1
Fa =k +2k
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Feos=k'+3K*+1...

There is a large number of k-Fibonacci sequences indexd@tie Online Encyclopedia of Integer Sequences,

from now on OEIS, being the first

{F.}=1{01122358, }.:A0000
{F.}={0. 1,25 12 29, .}. : A000L
{F..} = {0, 1, 38, 10, 33, 109, }.. : A0061

Preposition 2.1 (Binet's formula for the k-Fibonacci sequence [4]). Title k-Fibonacci number is given by

F=2 22)
Dl _Dz

where[]; & [, are the roots of the characteristic equakbm kx—1= 0.

Definition (k-Lucas sequence [1])For any positive real number k, the k-Lucas sequ{ﬂq&} is defined by

the recurrence relation

Lena =KLy o ¥ Ly N21 with L= 2, L= k (2.3)
A few k-Lucas numbers are

L,=k*+2

L, =k>+3k

L, =k'+4k*+2

L, s =k° +5Kk*+5k

Now on OEIS, being the first

{L}=1{2 134,711 18 29, }.. : AOGX

{L.}= {2 2 6, 14, 34, 82, 198, 478,} .. 08202
{L..} = {2. 3 11, 36, 119, 393, 1298, 4287 }.:.A006497

Preposition 2.2: (Binet's formula for the k-Lucas sequence [1]). Theuchs numbers are given by the formula
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Ly =01+ 05 (2.4)
where [, & [, are the roots of the characteristic equakén- kx—1= 0.

Definition (k-Fibonacci-Like sequence[9]).: For any positive real number k, the k-Fibonacci-Like

sequencd S, } is defined by the recurrence relation

S2= kSt Qny 20 with§=2, =2

A few k-Fibonacci-Like numbers are

S,=2K+2
S;=2K +4k
S =2K +6K+2

S5 =2K +8K + 6k
Now

{s.}={2 2 4,6, 10, 16, .}

{s,.} = {2 4, 10, 24, 58, 130, }.

Preposition 2.3: (Binet's formula for the k-Fibonacci-Like sequence [d]he k-Fibonacci-Like numbers are

given by the formula

DT+1_|:|;+1
0,-0,

(2.6)

S =2

where [, & [, are the roots of the characteristic equadér- kKx—1= 0

IDENTITIES OF THE K-FIBONACCI-LIKE SEQUENCE

The There are a lot of identities of Fibonacci and Lucasbeussndescribed in [8]. Thongmoon [16, 17], defined
various identities of Fibonacci and Lucas numbers. Singh, Bhiadaud Sikhwal [13], present some generalized identities
involving common factors of Fibonacci and Lucas numbers. GaqdaPanwar [5], present identities involving common
factors of generalized Fibonacci, Jacobsthal and jacalbistitas numbers. Panwar, Singh and Gupta ([11, 12]), present
Generalized Identities Involving Common factors of geiezdl Fibonacci, Jacobsthal and jacobsthal-Lucas numbers.
Singh, Sisodiya and Ahmed [15], investigate some productsFibonacci and k-Lucas numbers, also present some
generalized identities on the products of k-Fibonacci and led nambers to establish connection formulas between them

with the help of Binet's formula . In this paper, we prasidentities involving common factors of k-Fibonacci,ik-
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Fibonacci and k-Lucas numbers. Generalized k-Fibonaceé-sdquence [9], similar to the other second order classical
sequences. In this section we present generalized iderititolving common factors of generalized k-Fibonacci-Like, k-

Fibonacci and k-Lucas numbers. We shall use Biriettaula for derivation.

Theorem3.1: S , ,+2k= S, , ko, » Where 1l (3.9
Proof:
2 e .
SK,Zn—ZLk,Zml:ﬁ(Dzl t-073 1)(Din+l+D é‘“)
1 2
2 [ow_ge)[C2_0s
0, -4, U, 0,
=L(Df”—Dg")+2(Dl+Dz)
0, -0,
=Sk,4n—1+2k

This completes the proof.
Corollary 3.2: For 21, S, ,L .= 2 Rt K| (3.2)

Following theorems can be solved with the help of Binet'smitda

Theorem 3.3:§ ,, ,+2= § ,, , ko, » Where 1l (3.3)
Corollary 3.4: For n21, S,k ;=2 Fopit (3.4
Theorem 3.5:S , s+ S3= Qons ko » WherenO (3.5)
Corollary 3.6: For n=0, S ,.;L ;= 2[ Foanat Fky4] (3.6)
Theorem 37: S , ., +2= S o kowo » Wherem O (3.7)
Corollary 3.8: For n20, S 505 Lo 2= 2 Foan st ] (3.8)
Theorem 3.9:S .., 2= S 1 kon: » Where 0 (3.9)
Corollary 3.10: FOr n=0, S, Loons= 2 Foan s~ 1] (3.10)
Theorem3.11 S ,,-2=§ ., Lk L, » Where 1 (3.11)
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Corollary 3.12: For n=1, S, L Lni=2 Foypi— 1 (3.12)

Theorem 313 (K*+4) S ;1,1 S0 = 4( ks~ § . Where B 1 (3.13)

Theorem 3.14 (k2 +4) Soont Son = 4( b ane ot @ , where B 0 (3.14)
CONCLUSIONS

In this paper, we present many identities of common facbbrk-Fibonacci-Like, k-Fibonacci and k-Lucas
numbers with the help of their Binet's formula. The conceypt loe executed for generalized Fibonacci sequences as well

as polynomials.
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